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ABSTRACT
Multi-label aspect category detection allows a given review sen-
tence to contain multiple aspect categories, which is shown to be
more practical in sentiment analysis and attracting increasing at-
tention. As annotating large amounts of data is time-consuming
and labor-intensive, data scarcity occurs frequently in real-world
scenarios, which motivates multi-label few-shot aspect category
detection. However, research on this problem is still in infancy
and few methods are available. In this paper, we propose a novel
label-enhanced prototypical network (LPN) for multi-label few-shot
aspect category detection. The highlights of LPN can be summa-
rized as follows. First, it leverages label description as auxiliary
knowledge to learn more discriminative prototypes, which can
retain aspect-relevant information while eliminating the harmful
effect caused by irrelevant aspects. Second, it integrates with con-
trastive learning, which encourages that the sentences with the
same aspect label are pulled together in embedding space while
simultaneously pushing apart the sentences with different aspect
labels. In addition, it introduces an adaptive multi-label inference
module to predict the aspect count in the sentence, which is sim-
ple yet effective. Extensive experimental results on three datasets
demonstrate that our proposed model LPN can consistently achieve
state-of-the-art performance.
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1 INTRODUCTION
Aspect Category Detection (ACD) is a fundamental task in senti-
ment analysis, which aims to identify the aspect categories men-
tioned in a given review sentence from a predefined aspect cate-
gory set. As human usually make comments from different angles,
i.e., a review sentence always contains multiple aspects, multi-
label aspect category detection task came into existence. Exist-
ing approaches for multi-label ACD have achieved impressive and
promising performance [17, 20]. However, they rely heavily on
large amounts of labeled data for each aspect. As annotating data
is usually time-consuming, labor-intensive and even unachievable
in real-world application, which motivates the multi-label few-shot
aspect category detection task.

Few-shot learning can recognize novel categories effectively with
only a handful of labeled samples by exploiting the prior knowl-
edge learned from previous categories, which is promising to break
the data-shackles. Recent methods have made great progress in
computer vision domain [22, 37] and natural language processing
domain [10, 14]. Among these methods, prototypical network [30]
is a powerful and potential model, which follows the episode learn-
ing strategy and uses the𝑁 -way𝐾-shot setting. Specifically, in each
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episode, prototypical network first learns each prototype by aver-
aging the corresponding 𝐾 support samples, and then predicts the
labels of query samples based on the negative Euclidean distance
between query samples and 𝑁 prototypes in support set.

Intuitively, we can directly extend prototypical network to solve
the multi-label few-shot aspect category detection problem. How-
ever, there exist several challenging issues. (1) Simply calculating
the prototype by averaging intra-class support samples may cause
that different aspects share an identical prototype. Take an example
in Figure 1, we construct an episode under 3-way 2-shot setting,
i.e., there are 3 aspects with 2 samples per aspect in support set. As
a review sentence may contain multiple aspects, it is quite possi-
ble that different aspects distribute in the same support samples.
Here "staff" and "food" have the same support samples. Thus we
will obtain the same prototype for "staff" and "food". Although the
work [16] attempts to use the attention mechanism to alleviate
this issue, we find that it still does not work in this case. (2) When
learning the prototype for a target aspect in multi-label scenarios,
as each sentence probably contains several aspects, some irrelevant
aspects will inevitably disturb the learning procedure. For example
in Figure 1, when learning the prototype for "staff", the irrelevant
aspects like "food" and "location" in "The views are amazing from
any location, staff is friendly and the food was great too!" will cause
some negative impact. (3) Due to the diversity of human expression,
different sentences may contain different numbers of aspects, so
it is urgently needed to design an effective model to automatically
predict the number of aspects in a sentence.

In this paper, we propose a novel label-enhanced prototypical
network (LPN) for multi-label few-shot aspect category detection.
The main contributions of LPN consist of three parts. (1) By uti-
lizing the label text description as complementary information to
calculate the relationship between sentences and aspect labels and
then obtain more discriminative prototypes, the LPN model can
not only avoid the issue that different aspects share an identical
prototype, but also retain aspect-relevant information while elimi-
nating the negative effect triggered by irrelevant (noisy) aspects.
(2) By integrating contrastive learning to obtain more powerful em-
beddings, the LPN model can push the embeddings from the same
class close and embeddings from different classes further apart,
thus facilitating the downstream aspect category detection task. (3)
By introducing the adaptive multi-label inference module, the LPN
model can determinate the number of aspects accurately. To verify
the effectiveness of our proposed model, we conduct extensive ex-
periments on three datasets. The empirical study shows that LPN
can achieve state-of-the-art performance in comparison with other
strong baselines.

2 RELATEDWORK
2.1 Aspect Category Detection
Aspect Based Sentiment Analysis (ABSA) [33] is a fine-grained
sentiment analysis task that aims to extract aspects and predict
the sentiment of each aspect. Aspect category detection (ACD) is
an important subtask of ABSA, which aims to categorize a given
review sentence into a set of predefined aspects. Previous studies
mainly focus on single-aspect category detection, which include
unsupervised and supervised methods. Unsupervised methods use

Support Set

staff

(1) It is the staff and food quality that really needs fixing. 

(2) The views are amazing from any location, staff is friendly and the food
was great too!

food

(1) It is the staff and food quality that really needs fixing. 

(2) The views are amazing from any location, staff is friendly and the food
was great too!

experience
(1) Incredible spa experience!

(2) The food is always good and service has always been a great experience.

Query Set

experience and staff
(1) It was such a horrible experience, she was rude, unmannered and non   

professional great clip should not retain such a waste employee!

staff and food
(2) The pool is gorgeous, the rooms clean, delicious food, and staff that 

went above and beyond to help us enjoy our stay.

food
(3) We had breakfast the next morning on the first floor and the food was 

surprisingly good.

Figure 1: A meta-task example in 3-way 2-shot setting. The
first column denotes the aspect label and the second col-
umn denotes the corresponding review sentence. As each
review sentence may contain multiple aspects, we use dif-
ferent color background to mark the key words. The words
in gray describe irrelevant (noisy) aspects, and the words in
other colors represent the target aspects.

semantic association analysis based on point-wise mutual informa-
tion [31] or co-occurrence association rule mining [29] to extract
aspects. These methods require a large amount of corpus resources
and the performance is also barely satisfactory. Supervised methods
exploit representation learning [42], topic-attention network [24]
or multilingual ngram-based convolutional network [12] to identity
different aspect categories. These methods have shown promising
results in practice, but they rely heavily on a considerable amount
of labeled data for each aspect to train a discriminative classifier.
Due to the diversity and casualness of human expression, a review
sentence often contains multiple aspects, which motivates multi-
aspect category detection. Existing approaches for multi-label ACD
[17, 20] have achieved impressive performance. However, similar
with supervised methods for single-aspect category detection, they
also suffer from the serious data scarcity issue.

2.2 Few-shot Learning
Few-shot learning is a paradigm for solving the data deficiency prob-
lem, which aims to use the knowledge learned from seen classes, of
which abundant labeled samples are available for training, to recog-
nize unseen classes, of which limited labeled samples are provided.
It has drawn much attention in computer vision domain [22, 37]
and natural language processing domain [18, 40]. Meta-learning
has been successfully applied to solve the few-shot learning prob-
lem, which mainly includes model-based approaches, optimization-
based approaches and metric-based approaches. Specifically, for
model-based methods, like MANN [27] and MetaNet [25], they de-
pend on the models which can update the parameters rapidly with
a few training steps. For optimization-based methods, like LSTM
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Meta-Learner [26], MAML [8], Bayesian MAML [39], they intend
to adjust some optimization algorithms so that the model can be
good at learning with a few examples. For metric-based methods,
such as matching network [35], prototypical network [30], relation
network [32] and so on [3, 11], their basic idea is to learn a feature
mapping function that projects support and query samples into an
embedding space and classify the queries by learning their relations
by some metrics in that space. Among these methods, due to the
simplicity and effectiveness, prototypical network is one of the
most popular methods in few-shot learning.

2.3 Multi-label Few-shot Learning
Traditional few-shot learning focuses on single-label classification
task. However, in many real scenarios a sample often has multiple
labels, which gives birth to multi-label few-shot learning. As far
as we know, only a few works have been done for this task. In
computer vision domain, LaSO [1] is a multi-label few-shot image
classification model which leverages the label set operations (inter-
section, union, subtraction) to guide the model to learn the semantic
features. In audio domain, Cheng et al. [6] use the one-versus-rest
episode selection strategy and attention mechanism to deal with the
multi-label few-shot sound event recognition problem. In natural
language processing domain, Hou et al. [15] focus on multi-label
few-shot intent classification task and propose a meta calibrated
threshold mechanism with kernel regression and logits adapting
that estimates threshold using both prior domain experience and
new domain knowledge.

Proto-AWATT [16] is the first work which aims to address aspect
category detection in the few-shot scenario. It attempts to leverage
support-set and query-set attention mechanisms to alleviate the
negative effect caused by noisy aspects, and has achieved the state-
of-the-art performance. However, it still suffers from the issue that
different aspects perhaps share an identical prototype. In addition,
Proto-AWATT learns a dynamic threshold via the policy network,
which requires a more complex two-stage training process and that
the threshold satisfies the idealized Beta distribution assumption.

3 PROBLEM FORMULATION
To ease understanding, we briefly introduce the task of multi-label
few-shot aspect category detection. Table 1 summarizes some sym-
bol explanation in details.

Few-shot learning aims to recognize unknown categories with
few labeled samples by leveraging prior knowledge learned from
known categories. In general, the data can be divided into two
parts: seen (known) class set Cseen and unseen (unknown) class
set Cunseen, and Cseen

⋂Cunseen = ∅. A classifier is trained with
numerous samples from Cseen, and it is quickly adopted to Cunseen
(which is unavailable in training) with only a few labeled data. Meta
learning is an effective solution for few-shot learning, which con-
tains two phases: meta-training and meta-testing, and it commonly
follows the 𝑁 -way 𝐾-shot setting, i.e., for each task, there are 𝑁
classes and each class has 𝐾 supports (labeled samples).

In meta-training phase, the meta-classifier is trained on 𝑁𝑡𝑟𝑎𝑖𝑛
tasks. In each training task, it consists of a support set and a query
set. To construct the training task, 𝑁 classes are randomly sampled
from Nseen. The support set is composed of randomly selecting 𝐾

Table 1: Symbol explanation.

Symbol Explanation

Cseen the seen class set
Cunseen the unseen class set
𝑁 the number of aspect classes in each episode
𝐾 the number of support shots in each class
S the support set of an episode
Q the query set of an episode
x a sentence with𝑇 words
y the class label of x
𝑯 the embedding matrix of x via any pre-trained model
𝒐 the representation of x via feature extraction
𝑬 the label description representation
𝒑𝑖 the label-enhanced prototype of class 𝑖
𝒛𝑖 the label-specific embedding associated with class 𝑖

labeled samples from each of the 𝑁 classes, i.e., S = {(x𝑖 ,𝒚𝑖 )}𝑚𝑖=1,
where x𝑖 is a data sample, 𝒚𝑖 is the class label and𝑚 = 𝑁 × 𝐾 . The
query set consists of a portion of the remaining samples from these
𝑁 classes, i.e., Q = {(x 𝑗 ,𝒚 𝑗 )}𝑛𝑗=1, where 𝑛 is the number of queries.

In meta-testing phase, the trained meta-classifier is used to pre-
dict the labels of queries in 𝑁𝑡𝑒𝑠𝑡 tasks. In each test task, it also has
a support set and a query set. In a similar manner, 𝑁 classes are ran-
domly sampled from the test classes Cunseen. The support set and
query set are constructed in the same way as those in meta-training
phase. As the labels of queries are unknown in testing stage, the
query set in the test task can be represented as Q = {x 𝑗 }𝑛𝑗=1. The
goal is to predict the class labels for these queries.

Multi-label few-shot aspect category detection allows that
each single sentence is associated with a set of aspect categories
simultaneously. Specifically, given a sentence x, its label can be rep-
resented with a vector y = {𝑦1, 𝑦2, ..., 𝑦𝑁 } ∈ R𝑁 , where 𝑦𝑖 ∈ {0, 1}
and 𝑁 is the number of possible aspects. In this paper, we focus on
the multi-label few-shot aspect category detection problem.

4 APPROACH
The overall framework of the proposed LPN is shown in Figure 2.
It consists of four components: feature extraction, label-enhanced
prototypical network, contrastive learning and adaptive multi-label
inference. In this section, we will introduce these modules in details.

4.1 Feature Extraction
Given a sentence x with 𝑇 words, we can use any pre-trained
language model like Bert [7] to encode each word (token), and then
get the embedding matrix H = [h1,h2, ...,h𝑇 ] ∈ R𝑑×𝑇 . To better
extract the sentence-level semantic feature and assign reasonable
importance for each word, we follow [21, 38] to utilize a multi-
head self-attentive module to generate the sentence embedding.
Specifically,

𝑨 = softmax (𝑭2tanh(𝑭1𝑯 )) , (1)

where𝑨 ∈ R𝑅×𝑇 is the self-attentionweightmatrix,𝑅 is the number
of independent attention heads. 𝑭1 ∈ R𝑑′×𝑑 and 𝑭2 ∈ R𝑅×𝑑′ are
trainable parameter matrices. After obtaining 𝑨, we first calculate
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Label-enhanced Prototypical Network

Support Set

Label Description

Query Set

Contrastive Learning

Adaptive Multi-Label Inference

food selection

Training Process Testing Process

restaurant interior

Multi-head

Self-attentive

Module

Bert

A training/test task Positive Pair Negative Pair

With Aspect 1&2

With Aspect 11

You can eat in but it is bar stool 

seating and not a lot of space.

To top it off, the wine selection was 

broad and reasonable and the coffee

and sweets perfect.

It has a great combination of food 

variety as well as a relaxing 

ambiance.

The beer selection is amazing.

Anchor

The waitress is very presentable, 

doesn't bother to give us choices.

Everything was beautiful, right 

down to the french limonade bottle 

used for our water at the table.

Cute decor and tasty frosty beverage

called the frozen hot chocolate.

Figure 2: Illustration of our proposed method LPN.

the embedding matrix by:

𝑴 = 𝑯𝑨𝑇 , (2)

where𝑴 = [𝒎1,𝒎2, ...,𝒎𝑅] ∈ R𝑑×𝑅 . Furthermore, we concatenate
the obtained embeddings from different heads, and use a simple
linear projection to calculate the embedding of the sentence,

𝒐 = 𝑭3 [𝒎1 | |𝒎2 | |...| |𝒎𝑅], (3)

where 𝑭3 ∈ R𝑑×𝑑𝑅 is a trainable parameter matrix, and | | represents
the concatenation operation. 𝒐 ∈ R𝑑 is the final representation of
the sentence x.

4.2 Label-enhanced Prototypical Network
In terms of multi-label few-shot aspect category detection task,
the key point is to learn more discriminative prototypes which
could better retain class-relevant information while eliminating
the harmful effect caused by other noisy (irrelevant) aspects. To
achieve this goal, we propose to leverage the label text description
information to calculate the relationship between sentences and
aspect labels, thus obtaining more representative prototypes.

Considering the 𝑁 -way 𝐾-shot setting, we have a support set S,
which can be represented byS = {x11, x

1
2, ..., x

1
𝐾
, ..., x𝑁1 , x

𝑁
2 , ..., x

𝑁
𝐾
},

where x𝑖
𝑗
denotes the 𝑗-th sample belonging to the 𝑖-th class. After

feature extraction, we get the representations of these samples
O = {𝒐11, 𝒐

1
2, ..., 𝒐

1
𝐾
, ..., 𝒐𝑁1 , 𝒐

𝑁
2 , ..., 𝒐

𝑁
𝐾
}. In a similar manner, for each

label description like "Room cleanliness" or "Staff owner", we can
obtain its corresponding representation via feature extraction. In

the 𝑁 -way scenario, the label description representation can be
represented as 𝑬 = {𝒆1, 𝒆2, ..., 𝒆𝑁 }.

When calculating the class prototype, as each sentence may
contain multiple aspects, we would better first determinate the
importance weight of each sentence for a class prototype. To this
end, we utilize the label text description as auxiliary information.
Specifically,

𝛼𝑖𝑗 = o𝑖𝑗
𝑇
𝑾e𝑖 , (4)

where 𝛼𝑖
𝑗
denotes the importance weight of the 𝑗-th sentence for the

𝑖-th class prototype. o𝑖
𝑗
∈ R𝑑 denotes the representation of the 𝑗-th

sample belonging to the 𝑖-th class, o𝑖
𝑗

𝑇 ∈ R1×𝑑 is the transpose of o𝑖
𝑗
.

𝑾 ∈ R𝑑×𝑑 is a trainable projection matrix. 𝒆𝑖 is the representation
of the 𝑖-th label description.

Inspired by low-rank bilinear model [41], if imposing a low-rank
restriction on𝑾 , Eq. (4) can be rewritten as follows:

𝛼𝑖𝑗 = o𝑖𝑗
𝑇
𝑼𝑽𝑇 e𝑖 = 1𝑇 (𝑼𝑇 o𝑖𝑗 ◦ 𝑽

𝑇 e𝑖 ), (5)

where 𝑼 ∈ R𝑑×𝑘 and 𝑽 ∈ R𝑑×𝑘 are two low-rank matrices with
𝑘 < 𝑑 . 1𝑇 is a all-one vector. ◦ is the Hadamard product, i.e., element-
wise multiplication. By using this low-rank trick, we can reduce
the number of parameters to some extent.

To make the coefficients comparable among different sentences,
we normalize them across 𝐾 sentences (shots) belonging to the
same class with the softmax function:

𝛽𝑖𝑗 =
exp(𝛼𝑖

𝑗
)∑𝐾

𝑗 ′=1 exp(𝛼
𝑖
𝑗 ′)
. (6)
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Then we calculate the label-enhanced prototype p𝑖 ∈ R𝑑 for
class 𝑖 by:

p𝑖 =
𝐾∑︁
𝑗=1

𝛽𝑖𝑗o
𝑖
𝑗 . (7)

Given a query sentence x ∈ Q, we can compute the conditional
probability 𝑝 (𝑦 = 𝑦𝑖 |x,S) to predict its aspect label based on nega-
tive squared Euclidean distance.

𝑝 (𝑦 = 𝑦𝑖 |x,S) =
exp(−||𝒐 − p𝑖 | |22)∑𝑁
𝑗=1 exp(−||𝒐 − p 𝑗 | |22)

, (8)

where 𝒐 denotes the representation of x, which is obtained via
feature extraction.

Finally, we perform the cross-entropy loss on all samples in the
query set Q, i.e., the loss function of label-enhanced prototypical
network L𝑙𝑒𝑝𝑛 can be written as:

L𝑙𝑒𝑝𝑛 =
1
|Q|

∑︁
x∈Q

𝑁∑︁
𝑖=1

−𝑦𝑖 log𝑝 (𝑦 = 𝑦𝑖 |x,S), (9)

where |Q| is the number of samples in Q. Note that in the multi-
label 𝑁 -way 𝐾-shot setting, as a sentence may have multiple labels,
we need to consider 𝑁 labels for each query sentence.

4.3 Integrating with Contrastive Learning
Contrastive learning has achieved great success in computer vision
[5, 36], which aims to maximize similarities between instances from
the same class and minimize similarities between instances from
different classes. Here we integrate the contrastive learning into
label-enhanced prototypical network to generate better sentence
embeddings.

For traditional single-label aspect detection, we can directly
construct the contrastive samples using the known aspect labels.
However, in the multi-label aspect detection scenario, as a sentence
may contain a couple of aspects, for example, one sentence "The
pool is gorgeous, the room clean, delicious food, and staff that went
above and beyond to help us enjoy our stay" contains two aspect
labels "food" and "staff", and the other sentence "The food is always
good and service has always been a great experience" contains two
aspect labels "food" and "experience". If simply treating these two
sentences as positive pairs, it is unreasonable obviously. The reason
is that though these two sentences share a common aspect label
"food", they also have a totally different aspect label. To alleviate the
above issue, we use the prototypes and label description information
to first generate the label-specific embeddings for each sentence,
and then construct the contrastive samples.

In the 𝑁 -way 𝐾-shot setting, for each meta-task, we can ob-
tain 𝑁 prototypes 𝑷 = {p1, p2, ..., p𝑁 } and 𝑁 label description
representations 𝑬 = {e1, e2, ..., e𝑁 }. By combining 𝑷 and 𝑬 , we can
have the prototypes integrated with label description information
{a1, a2, ..., a𝑁 }, where a𝑖 = [p𝑖 | |e𝑖 ] ∈ R2𝑑 and | | represents the
concatenation operation. Then for a sentence x in the meta-task,
we can compute its label-specific embedding z𝑖 ∈ R𝑑 associated
with label 𝑖 by:

z𝑖 = 𝒈𝑖𝑯𝑇 , (10)
where H = [h1,h2, ...,h𝑇 ] ∈ R𝑑×𝑇 is the embedding matrix obtain
from any pre-trained language model like Bert. 𝒈𝑖 ∈ R1×𝑇 is a

weight vector obtained by:

𝒈𝑖 = softmax((𝑾𝑎𝒂𝑖 + 𝒃𝑎)𝑇𝑯 ), (11)

where𝑾𝑎 ∈ R𝑑×2𝑑 and 𝒃𝑎 ∈ R𝑑 are trainable parameters.
In meta-training phase, given a meta-task with 𝑁𝑡 samples, we

first use Eq. (10) and (11) to get the label-specific embeddings
and then collect all these embeddings to construct the set 𝒁 =

{z𝑖 𝑗 ∈ R𝑑 |𝑖 ∈ {1, 2, ..., 𝑁 }, 𝑗 ∈ {1, 2, ..., 𝑁𝑡 }}. If we regard each
label-specific embedding as an independent instance, each z𝑖 𝑗 will
be associated with a single ground-truth label 𝑦𝑖 𝑗 . Specifically, a
sentence "The food is always good and service has always been
a great experience" contains two aspect labels "food" and "experi-
ence", the labels of obtained label-specific embedding associated
with "food" and "experience" will be set to 1. Then we can define
the set 𝒀 = {𝑦𝑖 𝑗 ∈ {0, 1}|𝑖 ∈ {1, 2, ..., 𝑁 }, 𝑗 ∈ {1, 2, ..., 𝑁𝑡 }}. Fur-
thermore, we define the set 𝑰 = {z𝑖 𝑗 ∈ 𝒁 |𝑦𝑖 𝑗 = 1} which contains
the label-specific embeddings with usable ground-truth labels, and
the set 𝚪𝑖 𝑗 = {𝑰 \z𝑖 𝑗 } which contains the embeddings in 𝑰 with
z𝑖 𝑗 excluded. Considering z𝑖 𝑗 as the anchor, we can generate the
positive sample set 𝚲𝑖 𝑗 = {z𝑖𝑘 ∈ 𝚪

𝑖 𝑗 |𝑦𝑖𝑘 = 𝑦𝑖 𝑗 = 1} for z𝑖 𝑗 , and the
negative samples for z𝑖 𝑗 are the remaining ones in 𝚪

𝑖 𝑗 . With above
notations, the contrastive learning loss for the anchor z𝑖 𝑗 can be
written as:

L𝑖 𝑗
𝑠𝑐𝑙

= − 1
|𝚲𝑖 𝑗 |

∑︁
z𝑖𝑘 ∈𝚲𝑖 𝑗

log
exp(z𝑖 𝑗 · z𝑖𝑘/𝜏)∑

𝒛∗∈𝚪𝑖 𝑗 exp(z𝑖 𝑗 · z∗/𝜏)
, (12)

where z𝑖 𝑗 · z𝑖𝑘 denotes the inner product of the two vectors. |𝚲𝑖 𝑗 |
is the number of embeddings in 𝚲

𝑖 𝑗 . 𝜏 > 0 is an adjustable scalar
parameter, which can control the separation degree of classes [13].
By considering all the anchors, we can have the entire contrastive
loss as follows.

L𝑠𝑐𝑙 =
1
|𝑰 |

∑︁
z𝑖 𝑗 ∈𝑰

L𝑖 𝑗
𝑠𝑐𝑙
. (13)

To analyze Eq. (13), we do some simple formula transformation
as below.

L𝑠𝑐𝑙 =
1
|𝑰 |

∑︁
z𝑖 𝑗 ∈𝑰

− 1
|𝚲𝑖 𝑗 |

L′,

L′ =
∑︁

z𝑖𝑘 ∈𝚲𝑖 𝑗

log
exp(z𝑖 𝑗 · z𝑖𝑘/𝜏)∑

𝑧∗∈𝚪𝑖 𝑗 exp(z𝑖 𝑗 · z∗/𝜏)

=
∑︁

z𝑖𝑘 ∈𝚲𝑖 𝑗

( z
𝑖 𝑗 · z𝑖𝑘
𝜏︸   ︷︷   ︸

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

−log
∑︁

𝒛∗∈𝚪𝑖 𝑗
exp( z

𝑖 𝑗 · z∗
𝜏

)︸                   ︷︷                   ︸
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

).

(14)

From the above formula, it is easy to find that if we want to
minimize L𝑠𝑐𝑙 , we must maximize L′, where we need to maximize
the positive term and minimize the positive+negative term, so the
negative termwill be decreased. Intuitively, the contrastive learning
technique can push the label-specific embeddings from the same
class close and embeddings from different classes further apart.

4.4 Adaptive Multi-label Inference
For multi-label few-shot aspect category detection, one of the chal-
lenges is to determine the number of aspects in the sentence. Previ-
ous work [16] learns a dynamic threshold via the policy network.
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Table 2: Dataset statistics. #Aspects and #Sentences denote
the number of aspects and sentences respectively.

Dataset Split #Aspects #Sentences

FewAsp (single)
Training 64 12800
Validation 16 3200
Testing 20 4000

FewAsp (multi)
Training 64 25600
Validation 16 6400
Testing 20 8000

FewAsp
Training 64 40320
Validation 16 10080
Testing 20 12600

However, it requires that the threshold satisfies the Beta distribu-
tion assumption, which seems a little over-idealized. In addition, as
it is a two-stage method, the training process is also more compli-
cated. To overcome this issue, we propose an adaptive multi-label
inference method, which is simple yet effective.

In the𝑁 -way𝐾-shot setting,𝑁 is the maximal number of aspects
in a sentence. Given a sentence x, we can get its representation
𝒐 ∈ R𝑑 via feature extraction. Then we use a multi-layer perception
to predict the number of aspects in x. Specifically,

n𝑙 = softmax(𝑾𝑙o + 𝒃𝑙 ), (15)

where𝑾𝑙 ∈ R𝑁×𝑑 and 𝒃𝑙 ∈ R𝑁 are trainable parameters. n𝑙 ∈ R𝑁
is the indicator for the number of aspects. Take an example, if the
maximal value of n𝑙 is the second element, it means that x contains
two aspects.

Then in the meta-training stage, for each sentence from support
set S and query set Q, we use cross entropy to calculate the loss of
the aspect count,

L𝑐𝑜𝑢𝑛𝑡 =
1

|S ∪ Q|
∑︁

x∈S∪Q
−1𝑇 (t𝑙 ◦ log(n𝑙 )), (16)

where 1𝑇 is a all-one vector. ◦ is the Hadamard product, i.e., element-
wise multiplication. log(n𝑙 ) ∈ R𝑁 is to do the log operation on
each element of n𝑙 . t𝑙 is the ground-truth aspect count vector of x.

By combining Eq. (9), (13) and (16), we have the overall loss
function of the proposed framework:

L𝑡𝑜𝑡𝑎𝑙 = L𝑙𝑒𝑝𝑛 + 𝛾L𝑠𝑐𝑙 + 𝜆L𝑐𝑜𝑢𝑛𝑡 , (17)

where 𝛾 and 𝜆 are adjustable trade-off parameters. By minimizing
L𝑡𝑜𝑡𝑎𝑙 with the gradient descent method, all trainable parameters
can be learned.

5 EXPERIMENTS
5.1 Datasets
For fair comparison, we exactly follow [16] to perform experiments
on three datasets: FewAsp (single), FewAsp (multi) and FewAsp.
All these datasets are sampled from the large-scale multi-domain
dataset for aspect recommendation YelpAspect [4]. Specifically, Fe-
wAsp (single) consists of singe-aspect sentences, FewAsp (multi)
consists of a majority of multi-aspect sentences with a minority of

Table 3: Hyperparameters of our proposed method LPN.

Model 𝑑 𝑑 ′ 𝑅 𝑘 𝜆 𝛾 𝜏

LPN 768 256 4 100 0.1 0.01 0.1

single-aspect sentences, as some aspects only have a small amount
of multi-aspect samples, and FewAsp is randomly sampled from
the original dataset, which follows the same data distribution with
the real scenario. For data split, we also follow [16] to divide the
100 aspects without intersection into 64 aspects for training, 16 as-
pects for validation, and 20 aspects for testing. The detailed dataset
statistics is shown in Table 2.

5.2 Baselines
We compare the proposed LPN model with the following strong
baselines: Matching Network [35], Relation Network [32], Graph
Network [28], Prototypical Network [30], IMP [2], Proto-HATT [9]
and Proto-AWATT [16].

• Matching Network [35] first learns a embedding mapping
function and then takes the cosine similarity as distance
measure to obtain the classification results.

• Prototypical Network [30] calculates the prototype for
each class by averaging the corresponding support samples,
and utilizes the negative Euclidean distance between query
samples and prototypes to do the few-shot classification task.

• Relation Network [32] uses a deep neural network instead
of the fixed distance measure to calculate the relationship
between query and support samples.

• GraphNetwork [28] attempts to cast few-shot learning as a
supervised message passing task which is trained end-to-end
using graph neural networks.

• IMP [2] introduces infinite mixture prototypes for few-shot
learning, which represents each class by a set of clusters.

• Proto-HATT [9] is a hybrid attention-based prototypical
networks for the problem of noisy few-shot relation clas-
sification. It uses instance-level and feature-level attention
schemes to highlight the crucial instances and features re-
spectively.

• Proto-AWATT [16] is the first method for multi-label few-
shot aspect category detection task. It utilizes support-set
and query-set attention mechanisms to alleviate the adverse
effect caused by noisy aspects.

In addition, we conduct ablation study to evaluate the contribu-
tion of label enhancement and contrastive learning in LPN. Specif-
ically, we evaluate LPN under three cases: LPN (o, o), LPN (w, o)
and LPN (w, w).

• LPN (o, o)means the LPNmodel without label enhancement
and contrastive learning.

• LPN (w, o) means the LPN model with label enhancement,
but without contrastive learning.

• LPN (w, w) means the LPN model with label enhancement
and contrastive learning, i.e., the final model.
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Table 4: Average AUC and macro-F1 score on FewAsp (single).

5-way 5-shot 5-way 10-shot 10-way 5-shot 10-way 10-shotModel AUC F1 AUC F1 AUC F1 AUC F1

Matching Network [35] 97.05 81.89 97.49 84.62 96.30 70.95 96.72 73.28
Prototypical Network [30] 96.49 83.30 97.53 86.29 95.97 74.23 96.71 76.83
Relation Network [32] 93.31 75.79 90.86 72.02 91.81 63.78 90.54 61.15
Graph Network [28] 96.54 81.45 97.46 85.04 95.45 70.75 96.97 77.84
IMP [2] 96.65 83.69 97.47 86.14 96.00 73.80 96.91 77.09
Proto-HATT [9] 96.45 83.33 97.62 86.71 95.71 73.42 97.00 77.65
Proto-AWATT [16] 97.56 86.71 97.96 88.54 97.01 80.28 97.55 82.97

LPN (o, o) 97.88 87.62 98.48 90.31 98.13 83.99 98.53 85.95
LPN (w, o) 99.22 92.61 99.35 93.57 99.11 89.35 99.32 91.08
LPN (w, w) 99.29 94.43 99.49 94.40 99.14 89.40 99.28 90.43

Table 5: Average AUC and macro-F1 score on FewAsp (multi).

5-way 5-shot 5-way 10-shot 10-way 5-shot 10-way 10-shotModel AUC F1 AUC F1 AUC F1 AUC F1

Matching Network [35] 89.54 65.70 91.38 69.02 88.28 50.86 89.94 54.42
Prototypical Network [30] 89.67 67.88 91.60 72.32 88.01 52.72 90.68 58.92
Relation Network [32] 84.91 58.38 86.21 61.37 84.22 43.71 84.72 44.85
Graph Network [28] 87.97 59.25 90.45 64.63 86.05 45.42 88.44 48.49
IMP [2] 90.12 68.86 92.29 73.51 88.71 53.96 91.10 59.86
Proto-HATT [9] 91.10 69.15 93.03 73.91 90.44 55.34 92.38 60.21
Proto-AWATT [16] 91.45 71.72 93.89 77.19 89.80 58.89 92.34 66.76

LPN (o, o) 93.09 72.45 94.92 76.89 92.95 61.33 94.62 66.39
LPN (w, o) 95.43 78.82 96.22 81.70 94.29 66.36 95.43 71.08
LPN (w, w) 95.66 79.48 96.55 82.81 94.51 67.28 95.66 71.87

Table 6: Average AUC and macro-F1 score on FewAsp.

5-way 5-shot 5-way 10-shot 10-way 5-shot 10-way 10-shotModel AUC F1 AUC F1 AUC F1 AUC F1

Matching Network [35] 90.76 67.14 92.39 70.09 88.44 51.27 89.90 54.61
Prototypical Network [30] 88.88 66.96 91.77 73.27 87.35 52.06 90.13 59.03
Relation Network [32] 85.56 59.52 86.98 62.78 84.94 45.62 83.77 44.70
Graph Network [28] 89.48 61.49 92.35 69.89 87.35 47.91 90.19 56.06
IMP [2] 89.95 68.96 92.30 74.13 88.50 54.14 90.81 59.84
Proto-HATT [9] 91.54 70.26 93.43 75.24 90.63 57.26 92.86 61.51
Proto-AWATT [16] 93.35 75.37 95.28 80.16 92.06 65.65 93.42 69.70

LPN (o, o) 94.15 76.19 95.85 80.37 94.03 65.72 94.98 69.22
LPN (w, o) 96.41 82.26 97.43 85.81 95.26 71.25 96.23 75.49
LPN (w, w) 96.45 82.22 97.15 84.90 95.36 71.42 96.55 76.51

5.3 Implementation Details
Evaluation Metric.We follow [16] to adopt two widely used met-
rics Area Under Curve (AUC) and macro-F1 score to evaluate the
performance.
Parameter Settings. For all experiments, we use the pre-trained
language model Bert [7] to encode each word (token). Inspired by

[19], we freeze the first 6 layers of Bert and fine-tune the final 6
layers. For the model parameters, we set 𝑑 = 768, 𝑑 ′ = 256, 𝑅 = 4
and 𝑘 = 100 consistently. For the loss function, we set 𝜏 = 0.1,
𝜆 = 0.1 and 𝛾 = 0.01 consistently and use AdamW [23] optimizer
with the initial learning rate 1e-5. For these parameters, we use the
grid searching strategy and validation set to determine them. Take
parameter 𝑘 as an example. Figure 3 shows the performance of LPN
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(a) AUC (b) F1 Score

Figure 3: The performance of LPN (w,w) with different 𝑘 val-
ues on the validation set of FewAsp.

(w,w) with different 𝑘 values on the validation set of FewAsp. It
can be seen that when 𝑘 increases from 3 to 600, the performance
improves at first and then drops, so we set 𝑘 = 100 in experiments.
Table 3 summarizes the main hyperparameters of our model.

5.4 Result Analysis
We perform experiments with 5/10-way and 5/10-shot settings on
FewAsp (single), FewAsp (multi) and FewAsp three datasets. All
reported results are from 5 different runs, and in each run the
results are averaged over 600 test episodes. Table 4, 5 and 6 show
the experimental results for FewAsp (single), FewAsp (multi) and
FewAsp respectively. The baseline results are taken from [16] and
the best results are highlighted in bold. From the results, we could
make the following observations.

(1) LPN performs much better than other baselines. Specifically,
in terms of AUC, LPN improves upon the most competitive baseline
Proto-AWATT by 1.53%-2.13%, 2.66%-4.71% and 1.87%-3.30% on Fe-
wAsp (single), FewAsp (multi) and FewAsp respectively. In terms of
macro-F1 score, LPN improves upon Proto-AWATT by 5.86%-9.12%,
5.11%-8.39% and 4.74%-6.85% on FewAsp (single), FewAsp (multi)
and FewAsp respectively. The reason is that LPN leverages label
description as auxiliary knowledge to learn more discriminative
prototypes, integrates with contrastive learning to obtain better
embeddings and uses a more effective multi-label inference module
to accurately compute the aspect count.

(2) For all the methods, the results on FewAsp (multi) are a little
worse than those on FewAsp (single) and FewAsp. The reason is that
FewAsp (multi) consists of a large amount of sentences with multi-
ple aspects, which increases the complexity of the dataset greatly.
However, the proposed LPN can still achieve the best performance
compared with other baselines, which further demonstrates the
superiority of LPN in dealing with more complex multi-label tasks.

5.5 Ablation Study
Label-enhanced Prototypes. To verify the effectiveness of label-
enhanced prototypes, we make the ablation study. The results are
shown in Table 4, 5 and 6. LPN (o,o) means the LPN model without
label enhancement and contrastive learning, and LPN (w,o) means
the LPN model with label enhancement and without contrastive
learning. It is easy to find that LPN (w,o) always performs much
better than LPN (o,o) in all cases, which validates the effectiveness

of the label-enhanced prototypes. The reason is that label text
descriptions contain lots of aspect-relevant semantic information,
which is highly conducive to obtain more discriminative prototypes.
Contrastive Learning. We also make the ablation study for the
module of contrastive learning. The results are shown in Table 4, 5
and 6. LPN (w,o) means the LPN model with label enhancement and
without contrastive learning, and LPN (w,w) means the LPN model
with label enhancement and contrastive learning. We can observe
that in most cases LPN (w,w) performs better than LPN (w,o). This
is because that constrastive learning module can push samples in
the same class close and samples in different classes further apart,
thus obtaining better sentence embeddings.

5.6 Visualization
To better observe how the embeddings change with label-enhanced
prototypes and contrastive learning, we sample 3000 episodes from
test set of FewAsp (multi) in 5-way-5-shot setting, and then use t-
SNE [34] to visualize the prototype embeddings obtained from LPN
(o,o), LPN (w,o) and LPN (w,w). Note that we originally intend to
visualize the sentence embeddings, but each sentence may contain
multiple aspects which is difficult to distinguish by color. As each
prototype is associated with unique aspect and is generated by the
corresponding intra-class sentences, it can represent the sentence
embedding to some extent. Figure 4 gives the visualization result of
prototype embeddings obtained from LPN (o,o), LPN (w,o) and LPN
(w,w). Prototypes (data points) with the same color contains the
same aspect. It is easy to find that the distribution generated by LPN
(o,o) has a lot of overlaps. The label enhancement in LPN (w,o) can
help to separate the embeddings to some extent. The contrastive
learning can further guarantee that the embeddings from same
class are pulled together and the embeddings from different classes
are pushed apart.

6 CONCLUSION
In this paper, we propose a label-enhanced prototypical network
(LPN) to deal with multi-label few-shot aspect category detection.
To learn more discriminative prototypes, LPN adopts the label text
description as auxiliary knowledge to retain aspect-relevant infor-
mation while eliminating the negative effect triggered by irrelevant
aspects. To obtain better sentence embeddings to facilitate the as-
pect category detection task, LPN introduces contrastive learning
to reduce intra-class discrepancy and enlarge the inter-class differ-
ence among sentence embeddings. Extensive experiments on three
real-world datasets show that LPN outperforms the state-of-the-art
methods by a large margin. In future work, we plan to investi-
gate the theoretical underpinnings of our approach and extend our
model to other multi-label few-shot scenarios like intent detection
in dialogue systems.
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(a) Pic.1: LPN (o, o). (b) Pic.2: LPN (w, o). (c) Pic.3: LPN (w, w).

Figure 4: Visualization of prototype embeddings obtained from LPN (o, o), LPN (w, o) and LPN (w, w) respectively.
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